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Abstract. Antimatter represents the ptnnaele of energy density, offering the potential to enhance current fusion/fission
concepts enabling various classes of deep space missions. Current production rates are sufficient to support proof-of-
concept evaluation of many key technologies associated with antimatter-derived propulsion. Storage has been
identified as a key enabling technology for all antimatter-related operations, and as such is the current focus of this
NASA-MSFC effort to design and fabricate a portable device capable of holding up to 1012particles. Hardware has
been assembled and initial tests are underway to evaluate the trap behavior using electron gun generated, positive
hydrogen ions. Ions have been stored for tens of minutes, limited by observed iraeraetion with background gas.
Additionally, radio frequency manipulation is being tested to increase lifetime by stabilizing the stored pea'tides,
potentially reducing their interaction with background gas, easing requirements on ultimate trap vacuum and precision
mechanical alignment,

INTRODUCTION

The proton antiproton annihilation process packs the highest energy density of any known reaction in modern
physics. This value at l0 s MJ/g is 10 orders of magnitude above that of current chemical systems, 1000 times that

of fission based systems and 100 times that of fusion systems. To put it in terms of current NASA flight systems for
perspective, the approximatdy 750,000 kg of fuel and oxidizer onboard the space shuttle external tank has the same

energy equivalence as 42 mg of antiprotons (roughly 0.6 cc's in the form of antihydrogen). This potential has
clearly provided the impetus for research focused on the use of antimatter as a method of powering a new breed of

propulsion systems for deep space missions. Past studies (Vulpetti, 1984; Morgan, 1982; Rider 1997) have
addressed systems ranging from low Isp configurations, deriving thrust by heating an intermediate solid core
(similar to nuclear thermal reactors), to those concepts with incredibly high lsp, which directly exhaust the
annihilation products (usually referred to as beam core). The shortfall of these concepts is the requirement for

incredible amounts of antimatter (kg to tons) since they derive all their energy from the annihilation process.
However, several propulsion concepts have been studied that require far fewer antiprotons (micrograms to

milligrams) (Gaidos, 1998; Kemmash, 1992; Perkins, 1999). These systems derive their energy through a
combination of fission/fusion reactions and require only moderate numbers of antiprotons to serve as an initiator or

catalyst but still provide moderate lsp's ranging in the tens of thousands of seconds. An attractive feature of these
systems if they prove fruitful, is that fusion driver mass is replaced by the energy stored within the antiprotons. The
use of these hybrid systems may offer a near term approach to addressing deep space missions utilizing the

incredible potential of antimatter combined with fusion energy to enable deep space missions which are impractical

(both in time and net material) by any other method (Frisbee, 1998; Borowski, 1987).

To develop any antimatter derived space propulsion system or basic antimatter economy, three key technology
areas must be addressed, which include: production, storage and utilization. Currently, within the United States,

antiprotons are produced at two DepartmentofEnergy facilities: the Fermi and Brooldaaven National laboratories.

Studies have been performed regarding the current levels of production, efficiencies, and potentials for increase in
the near future (Schmidt, 2000; Augenstein, 1988). Ctrcently these sites have a combined production capability of

approximately two nanograms annually, quantities more than sufficient for proof of principle evaluations of the
remaining two technology areas. Storage of antiprotons has successfully been demonstrated as reported in past



experiments. These experiments have involved studying as few as two antiprotons for several months (Gabrielse,
1990), up to the storage of almost a million for nearly an hour (Holzscheiter, 1996). Portability has also been
examined (Howe, 1988). Basic storage is viewed as a key enabling technology and is currently the focus of the
NASA MSFC Propulsion Research Center antimatter activity. To this end, a hardware based test program terraed
the High Performance Antiproton Trap (HiPAT) has been established. This project is focused on developing a
second generation portable trap system building on experience gained fi'om a previous NASA JPL and Penn State
University collaboration which resulted in the fast generation portable trap referred to as Mark I (Smith, 1997).
Once basic portable storage has been successfully demonstrated with antiprotons, utilization experiments could
begin in earnest. This activity would initially involve the subscale testing of catalyzed or initiated hybrid propulsion
techniques as previously mentioned. Additionally, the availability of trapped low energy antiprotons can be used to
investigate high density storage (such as the production of anti-hydrogen) which would be required as the next step
in storage technology before it could be utilized for an actual propulsion concept.

TRAP DESIGN REQUIREMENTS

The HiPAT, a Penning trap that incorporates both magnetic and electric fields to hold charged particles, was

designed with a goal of holding 1012antiprotons (p) for up to 18 days. These requirements are believed sufficient

from both a quantity and transport perspective to enable proof of concept testing of prospective propulsion concepts.
The trap size and inner volume was constrained by the desire for portability and ultimately by project cost. Based
on these geometric and performance data the magnetic field, electric field and vacuum requirements could be
determined. Figure 1 illustrates the general layout of the electrode structta'e.

Overview

Mechanisms that limit the containment time of a cloud in the trap include viscous drag and "chemical" interactions

in background gas, and unstable perturbations due to mechanical misalignments. Theoretical models are sufficiently
well developed to treat the viscous drag aspect, defining acceptable background gas density_and gas composition

parameters. However models of the "chemistry", including charge-exchange with ions and p-atom formation with

antiprotons, are less well understood, The effects of alignment perturbations are also obscure, so that only rough
guidelines are available for defining trap stability. Fortunately several tools are available for improving the
containment time: r.f. manipulation techniques, elaborate and expensive isolation techniques to obtain picotorr level
vacuum, and precision alignment mechanisms. The r.E manipulation is needed regardless as a method to drive
particles into the highly-organized motion required for high-density storage. The r.f. also provides stability against
viscous drag, misalignment perturbations, and even chemistry, reducing the demands on ultimate vacuum and
precision alignment technology.

Requirements for High Density Storage

The magnetic requirement, providing radial confinement, is set by the necessity to achieve the highest possible ion
density. This condition is obtained when the ions in a cloud rotate about the symmetry axis with a common rotation

frequency 0_, with little random (thermal) motion. The density n, cloud rotation and cyclotron frequency are related
(Bollinget, 1993) through the plasma frequency,

(=q2n/ m) = 2 (1)

where _ = qB/m is the cyclotron frequency and q is the ion charge. The maximum ion density is achieved with a
rotation frequency equal to half the cyclotron _equency. The maximum density, termed the Brillouin (Brillouin,
1945) limit, can be expressed in the form

n = B2/(2 _omc2), (2)

where m is the mass of a particle (ion, electron, p, etc.) in the cloud. This relationship between applied field and

particle density is illustrated in Figure 2.
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While the magnetic field confines the cloud in the radial direction, axial confinement is achieved by creating an
electrostatic potential well using electrodes as shown in Figure 1. At the highest density, particles in the cloud are
distributed so that their electric fields cancel the axial component of fields produced by the electrodes. For a

spheroidal cloud with diameter 2ro and axial extent 2Zo,and uniform density n, the potential is given by (Bollinger,
1993)

qV(r,z) = .qZn/6eo (a r2 + b z2), (3)

where b = 3 Qi ° (OJ(Ot2"l) I/2 )/(a2"1), with a = zo/ro, and a=(3-b)/2. The symbol QI° is the associated Legendre
function of the second kind. The cloud can be contained by a harmonic well, in which the potential varies as

v(r,z)= VT(2z -r2)/(2zo), (4)

with voltages VT on the end electrodes consistent with the z-dependence of equation 3. The harmonic well defines a
natural axial frequency _ ffi sqrt(qVr/(2mz02), which is related to the stability of the cloud. With the HiPAT
geometry the spheroidal cloud shape parameters r0 and zo are approximately 2.7 and 11.7 era, respectively. Solving
for Vr with varying n (similar approach as with magnetic field calculation) results in the curve shown in Figure 2.
From this data it can be seen that approximately 20 kV and 10 kG are required to hold the program goal of 10 t2

antiprotons.
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FIGURE 1. Electrode Layout.

_loud

I
2#

,/t,
/ /

_/// HiPAT D4_ign

!

"l'otal Number _ Paflk_6

FIGURE 2, Trapped Particles vs. Applied Fields.

Radial Diffusion and Other Loss Mechanisms

There are several mechanisms that result in a loss of particles from the trapping volume. These loss rates are

important since they dictate the extent of portability. The primary driver to loss or rather particle "lifetime" is the
quality of the vacuum level which drives the radial diffusion and annihilation rates for trapped antiprotons. For a
trap in which radial diffusion is dominated by background gas scattering, the mean lifetime (Bollen, 1996) can be
expressed as

xg= I/nov * (¢_w'o_2, (5)

with o the momentum-transfer cross section, v the relative velocity of the ions and background gas. The factor

((oJ¢o02 arises from the random walk nature of the diffusion process, in which a scattering event is more likely to
increase than to decrease the radial location of an ion. One feature predicted by equation 5, is that lifetime increases
as the square of magnetic field. The sensitivity of lifetime to magnetic field has been reported (Malmberg, 1980)
experimentally. The lifetime also showed an incr_se with a deerea_ in background gas pressta'e, down to a
pressure of 10"*torr. The lifetime did not improve with improved vacuum below this value, because of the effects of
perturbations due to alignment errors. But even with the alignment errors, the lifetime increased quadratically with
magnetic field. Subsequent development of the traps pioneered by (Malmberg, 1980) has included the development
(Hollmann, 2000) of the "rotating wall", in which r.f. with a cyclic phase pattern is imposed on a segmented
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cylindrical electrode. With this r.f. manipulation, up to I0 9 ions have been held for several weeks. This technique
will be utilized on HiPAT to provide a comfortable margin for portability.

Experimental tests of antiproton storage present challenges to theoretical models. In (Holzscheiter, 1996) the

vacuum was poor enough (10"_Ltorr range) to allow significant p-atom formation. To illustrate extreme examples

of theoretical uncertainties, consider the annihilation rates of 10 eV p's in a 10"n tort vacuum at 300 k. In one

model, wherein direct annihilations are emphasized (Gibbs, 1997), the cross section in a helium background is 50
kbams, implying a lifetime of 4 years. In another model, in which atom formation is taken as the basic picture
(Morgan, 1970), the cross section in a hydrogen background is on the order of gigabarns, implying a lifetime of 5
hours. Despite the large differences, both models predict that above the tens of eV range the cross section drops

rapidly. Above this energy p-atom formation becomes improbable, and the cross sections approach the direct-

annihilation limit. Fortunately for HiPAT the p's require large energies, up to tens ofkeV, nudged by r.f. to form

the cloud rotation pattern needed for high density storage. The r.f. technique will be included in initial tests of
antipro_on storage in HiPAT.

TRAP HARDWARE DESCRIPTION

The HiPAT consists of a super conductive magnet system, ultra high vacuum system, high voltage distribution
network, and trap electrode assembly as illustrated in Figures 3 and 4. To gain a basic understanding of portability
from the start, these systems are mounted on a movable frame structure. The super conductive magnet,
manufactured by Cryomagnctics Inc., is cooled by a combination of liquid helium and nitrogen and equipped with a
two stage cryogenic cooler. The magnet (NbTi/Cu) is an end compensated solenoid design capable of producing a
field strength of 4 tesla (providing sufficient margin over the required 10 kG).
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FIGURE 3. HiPAT Cross-Section.
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It is also equipped with an internal active shield that effectively reduces the field to less than 50 G at the boundary of
the magnet system, simplifying operation and handling procedures. The system was designed around a 10 cm
diameter 4 K central bore with the liquid helium tank exposed, providing ctyopumping capability to the trapping
region.

The ultra high vacuum system is dewar mounted and consists of a central region with integrated front and rear
pumping manifolds. Primary pumping is performed with two turbo pumps and one ion pump which when operated
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with the cold bore are currently capable of reducing the system pressure to as low as 8.5 x 10""ton"as read on nude
ion gauges. The vacuum system components were selected to allow for a minimum bake out temperature of 200 C.
The forward manifold was kept clear of obstructions to allow for particle injection/extraction. It also contains a
movable microcharmel plate (MCP) device, which can be lowered into the beam line and used to make particle time
of flight and quantity measurements. The rear vacuum manifold contains the main high voltage wiring and is
equipped with feed-throughs capable of handling up to 20 kV. There are also alkr, ations for providing RF input and
signal output from the Wap.

The trap assembly positioned in the magnet central bore, consists of a series of six electrodes centered on two
pickup rings that are each composed of four 90-degree sectors. The electrodes, manufactured from titanium, form a
region 6 cm in diameter and 40 cm in length. To support and insulate the electrodes from each other and the beam
line, an exoskeleton was fabricated from Macor, a machineable vacuum compatible glass product. Connections to
all electrodes were made using 0.25mm diameter kapton coated wire, which was routed though Alumina insulation

tubes to the high voltage feed-throughs.
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FIGURE 4. HiPAT Laboratory. FIGURE 5. HiPAT Electrode Structure.

CURRENT TESTING

Testing to date has focused on storing positive ions to address both quantity and lifetime issues. These particles are
generated within HiPAT using an electron gun to ionize background gas. Two methods were used to examine these
trapped ions, the first, a non-in_usive technique made use of quadrupole pick ups to measure induced charge from
ions within the cloud. This signal is then amplified and monitored with a spectrum analyzer. The second method
requires destructively dumping the ions onto a MCP, providing time of flight and particle yield data. During initial
testing, the induced signal technique could not be interpreted due to ambiguous data. The MCP however produced
data more easily interpreted and so was chosen as the primary method of quantifying trap operation. The induced
signal technique will be revisited once predictable behavior has been established.

During initial tests of this system it was found that a significant bluish glow discharge was produced within the
negative well potentials formed at each end of the positively charge electrode structure. This discharge was visually
observed to have the shape of a hollow column. The impact of this glow was three-fold, first it adversely impacted
the vacuum pressure, second it resulted in unacceptable current draw from the electrode power supplies, and lastly it
resulted in a condition where ions could be continuously supplied to the trapping region. The glow was also the
cause of the num_ous large ambiguous signals ranging from 100 kHz to 5 MHz measured by the induced signal
technique. The discharge was investigated using optical spectral analysis, which indicated that the glow was the
primary spectral emission for carbon monoxide (a contaminant in most ultra high vacuum systems). To combat the
discharge several steps were taken, first the copper electrode material was replaced with titanium, second, floatable
spoiler screens were added to both the front and rear of the trap to reduce the effect of negative wells, and lastly the
system was periodically allowed to clean itself overnight by sustained glow discharge at high voltage (15,000 volts)
and current (10 to 100's ofmicro-amps). Typical trap operation is then restricted to below 1000 volts to provide a
stand offagainst glow discharge.
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During initial proton storage tests, the effects of chemistry on the lifetime of the hydrogen ions were dramatic. A
particular case illustrated in Figure 6, shows the results of a storage test using the forward portion of the trap (front
three electrodes) to create a shallow elevated well with potentials of 1000, 950 and 1000 volts above ground. The
magnetic field was set to 20 kG and the vacuum pressure maintained at 2x10 "!°torr. The electron gun was fu'ed for
2 seconds with a maximum beam current ofS0 micro-amps resulting in a temporary vacuum level of7xl0 "_°ton,.
Trap dumps to the MCP at four time slices are shown. The 3 second frame shows the initial constituents produced,
primarily the hydrogen ion sequence H+, H2* and I-I3÷with a slight amount of CO +. The time evolution shows the
charge exchange between the hydrogen and the carbon monoxide as they are reduced and increased, respectively.
The lifetime of hydrogen ions under these condition is very short, driven by chemistry, requiring that the quality of
the vacuum be greatly improved (additional conditioning to remove carbon compounds). For each time panel in
Figure 6 approximately 20,000 total ions are represented. Subsequent tests after additional trap conditioning
resulted in increased lifetimes of the hydrogen ions and lower production rates of carbon monoxide.
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FIGURE 6. Ion Storage and Extraction From HiPAT Without 1LF.
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With the initial success of proton storage in HiPAT the application of a rotating wall r.f. pattern to the 4 segment
ring (central) electrodes at the cyclotron frequency of FF ions was investigated. Using loading and vacuum
conditions similar to those of the non r.f. test (described above), the tn_ppotential well was set using all electrodes
with a symmetric 500, 300, 200 volt pattern and the center pickups floated at 100 volts. The magnetic field was
adjusted to 19.7 kG with a corresponding r.f. output of 30.37 MHz (sum of magnetron and cyclotron frequencies
(Gabrielse, 1990)) at I00 mV amplitude. Figure 7 illustrates the dramatic effect ofr.f, on the ion cloud with time
panels ranging from 15 to 600 seconds. The double curves, shown on each panel in this figure, represent the same
time-of-fiight data but with different vertical scales to resolve both large and small features. Aider a few seconds,
only W ions are detected in the MCP, with merely hints of heavier ion clusters. Without the r.f. excitation, high-
mass ion clusters are formed at the expense of H+ions.

The r.f. technique is still unsatisfactory at present. Observations suggest that heating accompanying the
compression process causes outgassing from the electrodes. The vacuum pressure is noted to drop when the trap is
dumped (order of a few x 10"_ ton') implying that the ion cloud might be getting replenished from an extraneous
mechanism. This condition is also hinted with the observation that the MCP baseline (r.f. on case) is not restored
alter the large hydrogen peak. The combination ofr.f, frequency and amplitude have to be adjusted, to achieve
stabilization with an acceptable amouat of heating. Additionally, timed optical exposures of the trapping region will
be required to verify that small pockets of glow discharge do not remain.
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FIGURE 7. Ion Storage and Extraction From HiPAT With and Without P,_F.

FUTURE RESEARCH

Improvements in the layout and conditioning of the ultra high vacuum system are scheduled. These changes are

focused on improving the quality.nof vacuum (lowering. the carbon based contaminants)"as well as driving"the
ultimate pressure to the low 10 ton"range. Modification of the electrode structure to improve the performance of
the spoiler screens and better manage the potential for glow discharge is also planned. This effort is deemed critical
since any hint of discharge makes the test data suspect. Once r.f. behavior with positive ions is better understood



andstableextended ion storage achieved, negative well potentials using electrons and negative hydrogen ions will

be investigated. Control of the discharge phenomena is critical to these tests since the negative ions and potential
glow discharge occupy the same containment volume. Also, positive and negative hydrogen ion sources have been
procured. These sources will provide the capability of practicing dynamic capture and stacking, techniques required
for filling the trap with antiprotons.
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